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Abstract— To automatically test web applications, crawling-
based techniques are usually adopted to mine the behavior 
models, explore the state spaces or detect the violated invariants 
of the applications. However, their broad use is limited by the 
required manual configurations for input value selection, GUI 
state comparison and clickable detection. In existing crawlers, 
the configurations are usually string-matching based rules 
looking for tags or attributes of DOM elements, and often 
application-specific. Moreover, in input topic identification, it 
can be difficult to determine which rule suggests a better match 
when several rules match an input field to more than one topic. 
This paper presents a natural-language approach based on 
semantic similarity to address the above issues. The proposed 
approach represents DOM elements as vectors in a vector space 
formed by the words used in the elements. The topics of 
encountered input fields during crawling can then be inferred by 
their similarities with ones in a labeled corpus. Semantic 
similarity can also be applied to suggest if a GUI state is newly 
discovered and a DOM element is clickable under an 
unsupervised learning paradigm. We evaluated the proposed 
approach in input topic identification with 100 real-world forms 
and GUI state comparison with real data from industry. Our 
evaluation shows that the proposed approach has comparable or 
better performance to the conventional techniques. Experiments 
in input topic identification also show that the accuracy of the 
rule-based approach can be improved by up to 22% when 
integrated with our approach. 

Keywords—Web application testing; semantic similarity; GUI 
testing 

I. INTRODUCTION 
Web applications nowadays play important roles in our 

financial, social and other daily activities. Testing modern web 
applications is challenging because their behaviors are 
determined by the interactions among programs written in 
different languages and running concurrently in the front-end 
and the back-end. To avoid dealing with these complex 
interactions separately, test engineers treat the application as a 
black-box and abstract the DOMs (Document Object Models) 
presented to the end-user in the browser as states. The 
behaviors of the application can then be modeled as a state 
transition diagram on which model-based testing can be 
conducted. Since manual state exploration is often labor-
intensive and incomplete, crawling-based techniques [1], [5], 
[6], [7], [11], [19], [27], [28], [30], [33] are introduced to 
systematically and automatically explore the state spaces of 

web applications. Although such techniques automate the 
testing of complicated web applications to a great extent, their 
broad use is limited by the required manual configurations for 
applications under test (AUT). First, many web applications 
need specific input values to their input fields in order to access 
the pages and functions behind the current forms. To achieve 
proper coverage of the state space of the application, a user of 
existing crawlers has to set the rules for identifying the topics 
of encountered input fields in advance so as to feed appropriate 
input values at run time. Typical rules are string-matching 
based, mapping the DOM representations of input fields to 
their topics. For example, Fig. 1 illustrates an input field 
requesting a last name, a value of topic last_name. To identify 
the topic of the input field, the values of its attributes such id 
and name have to be compared with a feature string 
“last_name” and an appropriate value can then be determined 
by the identified topic. Because input values in different topics 
such as email, URL and password are necessary for a web page 
requesting them, the manual configuration has to be repeated.  

 Second, ability to properly distinguish new GUI states from 
explored ones is fundamental to a crawler. Web pages may 
have contents irrelevant to testing such as advertisements or 
current time. As a result, existing crawlers allow some 
abstraction mechanisms when determining the equivalence of 
GUI states by comparing their DOMs. A commonly adopted 
abstraction technique is DOM content filtering. Users can 
include or exclude the DOM elements with specific tags, 
attributes or enclosed text in state comparison. Similarly, the 
abstraction may not be effective for all applications and usually 
need to be tailored [30]. 

 

In Browser: 

 
The DOM Element: 

 
The Extracted Feature Vector: 

['last', 'name', 'text', 'last', 'name', 'last', 'name', '35'] 
Fig. 1. An example input field requesting a value of the topic  
last_name 
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Finally, clickables such as links and buttons are DOM 

elements a crawler interacts with to trigger events on or submit 
requests to the AUT. While some crawlers have preset rules for 
common clickables such as <a> or <button>, application-
specific rules may be required. For example, Fig. 2 illustrates a 
sign-in button represented by <span> from a commercial 
application1. Because a rule to click all <span> is too general to 
be built in existing crawlers, a configuration checking the class 
attribute of <span> has to be manually set. 

Another drawback of adopting string-matching based rules 
in crawling-based web application testing is that the rules are 
often application-specific, since the naming conventions for the 
values of attributes of DOM elements are diverse in web 
applications. Moreover, in input topic identification, it could be 
difficult to determine the topic of an encountered input field 
when it matches multiple rules for different topics. To address 
these issues, several observations suggest the possibility of 
using natural-language techniques: 

• In markup languages like HTML and XML, the words 
used for attributes of DOM elements such as id, name, 
type and maxlength are extremely limited. Therefore, 
unlike traditional natural-language tasks such as 
sentimental analysis which need large corpora to build 
the dictionaries, the sizes of representative corpora for 
the tasks in crawling-based web application testing 
could be moderate. 

• Human interacts with web applications through the text 
in natural language but not the DOM structures or 
attributes. Therefore, abundant natural language 
information in labels or attribute values can be 
leveraged to help choose appropriate actions for testing.   

• While the words and sentences used for input fields of 
the same topic may be different among web 
applications, they are often semantically similar. For 
example, different websites may use “last name”, 
“surname”, “family name” or other related words to 
describe and name the input fields taking the user’s last 
name. 

Inspired by above observations, this paper presents a novel 
and natural-language technique to address the issues of rule-
based approach used in crawling-based web application testing. 
For the interested DOM elements such as input fields, divisions 
or even whole web pages, we extract their feature vectors 
consisting of the words used in the attributes, the nearest labels 
or the enclosed text. An example feature vector is illustrated in 

                                                           
1 https://www.qnap.com/solution/qcenter/index.php?lang=en 

Fig. 1. We then apply a series of transformations including 
Bag-of-words, Tf-idf (Term frequency with inverse document 
frequency) and LSI (Latent Semantic Indexing) [10] to these 
vectors to represent them with multi-dimensional, real-number 
vectors. Later, with a training corpus, for a new DOM element 
we can figure out its most similar vectors in the corpus by 
calculating the cosine similarities. This similarity information 
can then be used for input topic identification, state 
equivalence checking or clickable detection. In input topic 
identification, the proposed approach is under a supervised 
learning paradigm. That is, each feature vector in the corpus 
has to be labeled with a topic. A running example will be 
provided in Section III. In GUI state comparison and clickable 
detection, the proposed approach is under an unsupervised 
learning paradigm. In other words, we can determine whether a 
DOM element is equivalent to an existing state by its similarity 
with the vectors in the corpus without additional labeling. We 
believe that the proposed method can relieve the burden of 
constructing rules for unexplored web applications and 
enhance existing crawling-based techniques. 

To evaluate the proposed approach, we conducted 
experiments on input topic identification and GUI state 
comparison, respectively. First, for input topic identification, 
we collected 100 real-world forms, and split them into training 
and testing data to validate the effectiveness. The experimental 
results show that when the proportion of training data 
increases, our approach performs comparably to the rule-based 
one. In addition, the accuracy of the rule-based approach is 
significantly improved by up to 22% when integrated with the 
proposed technique. Second, for GUI state comparison, we 
used the data from industry to evaluate the effectiveness of 
different abstraction mechanisms for state equivalence. The 
proposed approach outperformed other mechanisms in three of 
the five dataset, and had close performance to the best 
mechanisms for the rest. 

The main contributions of this paper include: 

• A novel technique using semantic similarity in 
crawling-based web application testing to address the 
limitations of the rule-based approach for input topic 
identification, GUI state comparison and clickable 
detection. 

• The implementation and evaluation of the proposed 
approach in input topic identification and GUI state 
comparison. Experiments with 100 real-world forms 
and data from industry show promise for our approach. 
The source code and data of experiments on input topic 
identification are also publicly available2 to make them 
reproducible. 

• A discussion of usage scenarios of the proposed 
technique to help reduce the manual effort or increase 
the effectiveness of existing crawlers. 

II. BACKGROUND AND MOTIVATION 
Today’s web applications interact intensively with the users 

by dynamically changing the DOMs using client-side 

                                                           
2 https://github.com/jwlin/icst2017 

In Browser: 

 
The DOM Element: 

 
Fig. 2. An example sign-in button 
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JavaScript. To capture the behaviors of such applications, 
crawling-based technique plays a significant role [34] in 
automated web application testing [1], [5], [6], [7], [11], [19], 
[27], [30], [33]. The technique analyzes the data and models 
collected from dynamic exploration of the applications. 
Although exhaustive crawling can cause state explosion 
problem in most industrial web applications that have huge 
state spaces, the navigational diversity of the crawling is 
important for deriving a test model with adequate functionality 
coverage [1], and achieving this diversity is still challenging 
[20], [28].  

While there was a crawling technique ignoring text input 
[11], most existing crawlers [6], [19], [33] operate with 
randomly generated or user-specified data. To specify the data 
used in particular input fields, users have to provide feature 
strings (i.e., the values of the DOM attributes such as id or 
name of the input fields) in rules to identify the topics. For 
example, if we want “James” for an input field with id 
“lastName”, we could add a configuration similar to the 
following when using a crawler: 

input.id("lastName").setValue("James") 

Implicitly, the configuration creates the following rules: ���� ��� 	 
��
� � ���� 
�� �
����
��� � ������������� ���������������
����
�� ���������������
����
� � ����  ��
� � ��!������ 
Here {"lastName"} is a set of feature strings for the topic 

last_name. The feature strings in the set would be used to 
match all the substrings of the id, and the set may be manually 
expanded with more feature strings such as “surname” or “last” 
when more input fields of the same topic are encountered. 
{"James"} is the data set we prepare for input fields with the 
topic. 

The string-matching based rules for input topic 
identification are widely used in existing crawlers. 
Nevertheless, the rules for one web application may not work 
for another. As a result, users may have to reconstruct or adjust 
the rules for new AUT. For instance, Table I shows input fields 
collected from four real-world forms. The first input field 
contains two attributes, id and name, both with values 
“firstName”. To identify the input field and assign values used 
for it, the rule containing a feature string “first” is created to 
match the id or name. However, as illustrated, the rule derived 
from the first input field does not work for the second one 
which needs feature string “fn” in the rule. Moreover, both 
rules fail in identifying the third input field of the same topic, 
because the id and name look randomly generated. To address 

TABLE I.  EXAMPLE INPUT FIELDS AND RULES FOR IDENTIFYING THEIR 
TOPICS. STRING: FEATURE STRING. 

Input Field Topic String 
<input id="firstName"  name="firstName"> first_name "first" 
<input id="aycreatefn" name="aycreatefn"> first_name "fn" 
<input  id="textfield-1028-inputEl" 
name="1023000000003015"> first_name (*) 

<input id="permanenttel" 
name="permanenttel"> phone "tel" 

<input id="aycreateln" name="aycreateln"> last_name "ln" 
* To be discussed 

this issue, our approach takes the nearest labels or descriptions 
of a DOM element into consideration. The intuition is that the 
nearest labels are likely the text about the input field for human 
to read, and if so, the text for the same topics of input fields is 
often semantically similar even in different websites. In fact, 
the third input field was successfully identified in our 
experiments. 

Another issue of the rule-based approach for input topic 
identification is that it is difficult to determine the topic if there 
are multiple candidates. For example, after setting the rules 
containing the feature string “tel” for the fourth input field and 
“ln” for the fifth input field in Table I, the fifth input field will 
be categorized as phone and last_name simultaneously because 
both rules match the id “aycreateln”. In contrast, the similarity 
information with the input fields in the corpus could help 
resolve this ambiguity, and it worked for the above example in 
our experiments. 

Constructing accurate state transition models for testing is 
difficult because of the dynamism in AJAX web applications 
nowadays. To focus on only interested parts of the web pages 
when computing state equivalence, many abstraction 
techniques are proposed, and most of them are based on DOM 
content filtering [5], [6], [24], [29], [30]. That is, to eliminate 
specific nodes of DOM trees such as ones containing time 
stamps, invisible blocks or tags with particular attributes when 
examining the equivalence of two documents. These 
abstraction mechanisms are sometimes called oracle 
comparators [5], [6], [29] for users of a crawler to choose. For 
example, in the tool implemented in [5], users can use 
DateOracleComparator to ignore time stamps on web pages. 
As a result, two identical pages except for the different time 
stamps would be treated as the same GUI states. However, the 
state-equivalence notions are often application-specific and 
may need to be tailored [6], [30]. For instance, a test engineer 
probably pays attention on a particular window on top and 
intentionally ignores changes in the background even if they 
are visible. As a result, two web pages with different DOM 
structures might be considered the same GUI state. Instead of 
string-matching or DOM-checking, our approach addresses the 
issue by similarity with explored web pages (vectors in the 
corpus). We consider only text on web pages and reduce the 
effort of picking or implementing different DOM filters. Our 
evaluation shows the proposed approach has better or 
comparable performance to previous abstraction techniques in 
the literature. 

 Clickables such as links or buttons on web pages are 
important for crawling-based web application testing, because 
a crawler has to click them to interact with the AUT. Common 
clickables such as <a> and <button> can be detected and fired 
by a crawler following HTML specification [16], but as 
mentioned in Section I, manual configurations may be required 
to detect some uncommon clickables. Because the clickables 
are also DOM elements, our approach may be adopted to detect 
them. 

 In unsupervised document analysis, vector transformations 
such as Tf-idf and LSI are algorithms that project a text corpus 
to a vector space by examining the word statistical co-
occurrence patterns [10]. The concept behind Tf-idf is that the 
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words appearing frequently in a document and infrequently in 
other documents could be used to uniquely represent the 
document. Furthermore, LSI is used to reduce the rank of a 
word-document matrix by applying Singular Value 
Decomposition [25], a mathematical technique in linear 
algebra. Each dimension of the rank-reduced vector space 
hopefully represents a latent concept in the text. In this paper, 
we apply these transformations to feature vectors extracted 
from interested DOM elements, and measure how similar two 
vectors are by calculating the cosine similarity (i.e., the cosine 
of the angle). 

III. APPROACH 
An overview of our approach is depicted in Fig. 3. First, we 

extract feature vectors from the collected DOM elements to 
build a training corpus. Each vector in the corpus has to be 
labeled by its topic if the corpus is for input topic 
identification. However, we may label a group of vectors as the 
same topic at a time instead of one by one. The detail will be 
provided in Section III-C. Afterwards, for encountered DOM 
elements, we extract and transform them to project them into 
the vector space constructed by training data, and do inference 
based on their similarities to vectors in the training corpus. 
Here we provide a running example and detailed explanation 
about how to exploit the proposed technique on input topic 
identification. Once the topics are identified, the corresponding 
values can then be selected from a pre-established databank 
[28] or generated by data models such as smart profile [18]. 
The same concept can be applied to state comparison and 
clickable detection without significant changes. 

A. Feature Extraction 
 A novelty of this paper comparing with other crawling-
based techniques for web application testing is that we consider 
not only the attributes but also the nearby labels or descriptions 
of DOM elements for input topic identification. Algorithm 1 
shows how it is achieved. First, we specify DOM attributes 
such as id, name, placeholder and maxlength which concern 
input topic identification in an attribute list, and the values of 
matched attributes of the DOM element will be put into the 
feature vector (line 2 to 4). Moreover, to find the 
corresponding descriptions, we search the siblings of the DOM 
element for tags such as span and label in a tag list and put the 
texts enclosed by the tags into the feature vector (line 11 to 18). 
If no such tags are found, the search will continue on the 
DOM’s parent recursively for several times (line 20). In 
addition, we perform a couple of normalizations such as 
special character filtering and lowercase conversion to the 
words in the extracted feature vector. 

 

 
 A running example is shown in Fig. 4. For the first input 
field in Fig. 4, the feature vector was first constructed with its 
values of attributes: “text”, “last”, “name”, “last”, “name” and 
“35” (line 2 to 4). Then in findClosestLabels(), because the 
input element has no siblings, the algorithm searched siblings 
of its parent (line 20). In the second iteration of the search, a 
<span> with text “Last Name” under <th> was found, and the 
words “last” and “name” were put into the feature vector. The 
feature vectors for the input fields in Fig. 4 are shown in Fig. 5. 

 

 

 
Fig. 3. An overview of the proposed approach 

Fig. 4. A running example 

['last', 'name', 'text', 'last', 'name', 'last', 'name', '35'] 
['email', 'text', 'email', 'email', '35'] 
['password', 'password', 'password', 'password', '25'] 
['verify', 'password', 'password', 'check', 'password',  
 'check', '25'] 

Fig. 5. The extracted feature vectors from the example in Fig. 4 
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B. Vector Transformation 
After all DOM elements for training are represented as 

feature vectors in a corpus, three transformations are applied to 
the vectors sequentially: Bag-of-words, Tf-idf and LSI [10]. 
These transformations convert the vectors from words to multi-
dimensional and real-number vectors, and each dimension of 
the vectors hopefully represents a latent concept consisting of 
the words in the corpus. In the following paragraphs we use 
document and feature vector interchangeably because they are 
identical in the context of this section.  

First, Bag-of-words transformation is used to represent 
each document in natural language in a corpus as an integer 
vector based on its word counts, and the dimension of each 
vector is the number of distinct words (the “dictionary”) in the 
corpus. For example, Table II shows that given the four 
documents in Fig. 5, there are nine distinct words in the 
documents. As a result, the documents can be represented by 
nine-dimensional vectors as shown in Fig. 6. We can see the 
third vector is [(5, 1), (6, 4)] because the document is  
['password', 'password', 'password', 'password', '25'] in which 
the word with index 5 (“25”) appears once and the word with 
index 6 (“password”) appears four times. We use sparse 
representation, i.e. only (index, value) pairs for the dimensions 
with non-zero value, to make the following explanation clearer. 
Bag-of-words transformation is a simplified representation 
because it disregards grammar and word order in documents. 
Fortunately, for DOM elements in web applications we do not 
care about these two properties either. 

 Second, Tf-idf transformation converts the integer-value 
Bag-of-word vectors to real-value ones. Intuitively, if a word 
appears frequently in a document and infrequently in all other 
documents, the word could uniquely represent the document. 
Tf-idf assigns weights to words in documents based on this 
intuition. A common weighting scheme is: ft,d×(log2)(N/nt). ft,d 
is the frequency of the word t in document d, N is the number 
of all documents and nt is the number of documents in which t 
appears. The Tf-idf representations of the documents in Fig. 5 
are shown in Fig. 7. Taking the third document as an example, 
for the word “25” (index 5), the ft,d is 1 and nt is 2 because it 
appears once in the document and twice in all four documents, 
so the Tf-idf is 1. For the word “password” (index 6) appearing 
four times in the document, the ft,d is 4 and nt is 2, and the Tf-
idf is 4. Therefore, we have [(5, 1), (6, 4)] as the Tf-idf 
representation of the third document. After normalizing the 
vector to unit length, we have [(5, 0.2425), (6, 0.9701)] 
(rounding off after the 4th place and so are the following values 
in matrices) as shown in Fig. 7. 

TABLE II.  THE DICTIONARY OF DOCUMENTS IN FIG. 5. 

Word Index 
“text” 0 
“last” 1 

“name” 2 
“35” 3 

“email” 4 
“25” 5 

“password” 6 
“verify” 7 
“check” 8 

 

 
Finally, LSI transformation tries to deal with the problem 

that different words used in the same context may have similar 
meanings. The transformation reduces the dimension of the 
vector space constructed by the words and documents in a 
corpus using a mathematical technique called Singular Value 
Decomposition (SVD) [25]. Each dimension of the rank-
reduced vector space hopefully represents a latent concept 
contained in documents. To do LSI transformation, we first 
describe the documents as a term-document matrix X, and then 
decompose X by SVD as X=U�VT. Here U and VT are 
orthogonal matrices that could represent latent concepts in the 
documents and the coordinates of the documents in the latent 
vector space, respectively. � is a diagonal matrix that could 
state the importance of each latent concept. For example, after 
Bag-of-word and Tf-idf transformations, the documents in Fig. 
5 can be written as a term-document matrix X as: 

 
After decomposing X as U�VT, U is 

 
Each column in U could be interpreted as a latent concept in 
the documents. For example, the first concept c1 in the corpus 
is: 

"#�$$$% & �$'� " #�((() & �*+,,-./0� " #�%12' & �34/567�" #�8'2# & �9:�9;� 
and so are the rest three concepts. Note that the latent concepts 
are justified on the mathematical level and probably have no 
interpretable meaning in natural language. � is a diagonal 

[(0, 1), (1, 3), (2, 3), (3, 1)] 
[(0, 1), (3, 1), (4, 3)] 
[(5, 1), (6, 4)] 
[(5, 1), (6, 4), (7, 1), (8, 2)] 

Fig. 6. The Bag-of-word representations of the documents in Fig. 5 

[(0, 0.1162), (1, 0.6975), (2, 0.6975), (3, 0.1162)] 
[(0, 0.1622), (3, 0.1622), (4, 0.9733)] 
[(5, 0.2425), (6, 0.9701)] 
[(5, 0.1644), (6, 0.6576), (7, 0.3288), (8, 0.6576)] 

Fig. 7. The Tf-idf representations of the documents in Fig. 5 
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matrix containing singular values that could represent the 
importance of latent concepts in descending order. VT is: 

 
where each column of VT represents the coordinates of the 
corresponding document in the vector space formed by the 
latent concepts. For example, the coordinates of d3 
(['password', 'password', 'password', 'password', '25'] in Fig. 5) 
is [(0, -0.7071), (3, 0.7071)], which could be interpreted as that 
the document consists of -0.7071×c1 and 0.7071×c4. With the 
same transformations, we can transform a document q into the 
latent vector space in which its coordinates q�  = �-1UTq. The 
similarity of q to other documents can then be calculated. In 
practice, we compare documents in a rank-reduced vector 
space by keep the k largest singular vales in � and their 
corresponding vectors in U and VT. 

C. Labeling 
For input topic identification, each input field in the 

training corpus has to be labeled by its topic, and we may take 
advantage of the results from previous stages to facilitate the 
labeling process. First, conceptually similar input fields are 
expected to be close in the latent vector space. For example, d3 
([(0, -0.7071), (3, 0.7071)]) and d4 ([(0, -0.7071), (3, -0.7071)]) 
look close, and both of them should be labeled as the topic of 
password. In addition, the most appropriate latent concept for 
representing d3 may be c1 or c4 since the absolute weights in 
these dimensions are maximal (0.7071) over other dimensions, 
and so is d4. As a result, we developed a quick heuristic to map 
each input field to a latent concept in which its absolute value 
is maximal in the transformed vector. For example d3 and d4 
would be mapped to c1 or c4, and d1 and d2 would be mapped to 
c2 or c3. Users can label all the input fields belonging to the 
same latent concept at a time, or label some of them separately. 
In addition, it should be noticed that when integrating the 
proposed approach with rule-based method for input topic 
identification, the labeling effort may be negligible because it 
is implicitly included in rule construction. 

D. Inference 
 The inference is done by calculating the similarities of an 
encountered DOM element with the ones in training corpus. 
For a DOM element, we first extract its feature vector with a 
dictionary built in previous stages, and apply the same Bag-of-
word and Tf-idf transformations to it. The converted vector is 
then projected into the latent vector space formed by the 
training corpus with the matrices in previous decomposition. 
Finally, the similarity is calculated. Cosine similarity, i.e., the 
cosine of the angle between two vectors is adopted, because it 
is reported a good measure in information retrieval [8]. For 
example, if we want to infer the topic of an input field in Fig. 8 
with a corpus built from Fig. 5. We first obtain the Tf-idf 
representation of the input field as [(0, 0.4472), (2, 0.8944)]. 
Note that only words “text” (index 0) and “name” (index 2) are 
used in the representation because other words extracted from 
the input field do not exist in the dictionary. Second, we 
transform the representation into a rank-three approximation of  

 
the latent vector space built from the corpus, as mentioned in 
Section III-B. The coordinates of the input field to be inferred 
would be: q� 3 = (�3)-1(U3)Tq3. That is 

<%�$2'8 # ## %�#%(1 ## # #�2(%#=
>?

@
AA
AA
AB

#�#### "#�%288 #�#88%#�#### "#�C(C$ "#�'#$(#�#### "#�C(C$ "#�'#$(#�#### "#�%288 #�#88%#�#### "#�)1') #�1#%)"#�$$$% #�#### #�####"#�((() #�#### #�####"#�%12' #�#### #�####"#�8'2# #�#### #�#### D
EE
EE
EF

G

@
AA
AA
AB
#�CC1$##�(2CC###### D

EE
EE
EF

 

	 �#�#### "#�'%## "#�CC88�G 

The cosine similarity of q� 3 with documents in the corpus is: 

�?H IJ�
���KLMN O# "#�1#1% "#�1#1%PG� 	 #�221) �QH IJ�
���KLMN O# "#�1#1% #�1#1%PG� 	 #�#)21 �MH IJ�
���KLMN O"#�1#1% # #PG� 	 #�#### �RH IJ�
���KLMN O"#�1#1% # #PG� 	 #�#### 

 q� 3 is most similar to d1. Since d1 should be labeled as the 
topic of last_name in previous steps, we can infer the topic of 
the input field in Fig. 8 as last_name, too. Note that in this 
example, the input field to be inferred uses randomly generated 
id and name, and the description (“Family Name”) may contain 
no keywords users have learned previously (e.g. “Last”) for 
identifying the topic. The idea behind the proposed method is 
that DOM elements are inferred by their usages of the used 
words, which string-matching based approaches do not take 
advantage of. 

 When applying the proposed approach to input topic 
identification, several input fields with different topics could be 
extremely similar with the input field to be inferred. We handle 
this condition with a voting process. First, the topic of the 
vector in the latent space most similar to the one to be inferred 
will be selected. If the difference of the similarities between the 
top 5 most similar vectors is less than a threshold, the topic will 
be determined by a voting process within the top 5 vectors. If 
there are multiple candidates after the vote, a random choice 
will be made. The voting process provides a chance to 
correctly infer the topic when there are multiple vectors with 
close similarity scores. For example, Table III shows that the 
inferred topic is mistaken when only the most similar vector is 
considered, but there is a chance to correct the mistake since 
the voting process may guess the right topic in random choice 
from last_name and password. 

 

The DOM Element: 

 
The Extracted Feature Vector: 

['family', 'name', 'text, '1023000000003017', 'textfield',  
 '1029', 'inputel'] 
Fig. 8. An input field to be inferred 
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TABLE III.  AN EXAMPLE FEATURE VECTOR AND ITS TOP 5 MOST SIMILAR 
VECTORS. 

Similarity Vector Topic 
(N/A) ['text', 'psurname', '30'] (To be inferred) last_name
0.9982 

(Most similar) ['text', 'fname', '30'] first_name 

0.9978 ['text, 'lname', '30'] last_name 

0.9963 ['familyname', 'familyname', 
'text', '30'] last_name 

0.9296 ['conf', 'pword', password', '30'] password 
0.9220 ['pword', 'password', '30'] password 

 

E. Integration with the Rule-based Approach 
 We may address the issues of the rule-based approach 
mentioned in Section II by integrating it with the proposed 
approach. Here we describe how to implement it in input topic 
identification, and the same concept can also be adopted in 
GUI state comparison and clickable detection in terms of 
taking suggestions from the our method. First, for the input 
fields not identified by the rule-based method, we output the 
answer found by our technique. Second, for the input fields 
matching multiple rules for different topics, we select the 
answer with the help of our technique. Specifically, if the 
natural-language answer appears in the candidates, the answer 
will then be selected, or a random choice will be made among 
all candidates including the natural-language one. In Section V, 
we evaluated the effectiveness of the integration 

IV. IMPLEMENTATION 
We implemented the proposed method with Python 2.7. A 

Python library, gensim [23] is used for vector space related 
operations such as vector transformations and similarity 
calculation. Interaction with web applications is supported by 
Selenium Webdriver [31], and BeautifulSoup [9] is used to 
parse and manipulate DOMs. 

V. EVALUATION 
To assess the efficacy of the proposed approach, we 

conducted two experiments on input topic identification and 
GUI state comparison, respectively. In the first experiment, we 
collected and labeled input fields from 100 real-world forms, 
and divided them as training and validation data to evaluate the 
performances of the proposed and rule-based approaches. In 
the second experiment, we used GUI states collected from real 
tests in QNAP, a software company in Taiwan, to evaluate the 
effectiveness of the proposed technique and different 
abstraction mechanisms. In general, the research question is: 

Q1. What is the effectiveness of the proposed approach in 
input topic identification and GUI state equivalence 
computation, comparing with conventional methods 
used in crawling-based web application testing? 

For input topic identification, there are two additional 
research questions: 

Q2. How much training data is required for the proposed 
approach? 

Q3. Can the proposed approach be used to improve the 
rule-based one?  

A. Input Topic Identification 
1) Subject Forms 
We collected 100 graduate program registration forms 

across 9 countries in the world. There are totally 958 input 
fields in the forms, ranging from two to fifty-eight for each 
form, and 62 input topics such as password, email, first_name 
and zipcode are labeled. Table IV shows some labeled topics 
and the number of input fields for each topic. Each topic has to 
be distinguished from each other to pass the forms. For 
example, several date-related topics with different formats such 
as date-mm/dd/yyyy, date-mm/yyyy and year-yyyy are labeled 
for input fields in different forms taking date information. We 
choose registration forms as subject data for several reasons. 
First, they usually contain many different topics of input fields 
such as user profile, date or URL, which is appropriate for our 
evaluation. Second, the application states behind the forms are 
important because they take information from the users and 
then interact with them. However, the states are usually 
difficult to be reached using existing crawlers with random 
inputs. In addition, we want to evaluate the effectiveness of the 
methods on inferring unknown forms with training data in the 
same category. 

2) Experimental Setup 
 To understand how the proportion of training data affects 
the performances of the methods under evaluation, we 
randomly chose 10% to 70% of the subject forms as training 
data, respectively. We derived labeled corpora, dictionaries and 
vector space models for the proposed approach, and generated 
rules (i.e., mappings from feature strings to topics) from the 
input fields of the training forms for the rule-based approach. 
All the artifacts were used to infer the input fields in the 
remaining forms, and the inference accuracies (i.e., number of 
correctly identified input fields over number of all inferred 
input fields) were calculated. Experiments with 10% to 70% 
training data were repeated 1000 times, respectively. Five 
methods were evaluated in these experiments: (1) NL, the 
proposed natural- language approach. (2) RB, the rule-based 
approach. (3) RB+NL-n (no-match), using the NL approach to 
identify input fields not recognized by RB, as discussed in 
Section III-E. (4) RB+NL-m (multiple), using the NL approach 
to help identify input fields from multiple candidates by RB, as 
discussed in Section III-E. (5) RB+NL-b (both), using both (3) 
and (4). 

TABLE IV.  LABELED INPUT TOPICS AND NUMBER OF INPUT FIELDS FOR 
EACH TOPIC IN THE EXPERIMENT. 

Topic  # … Topic # 
password 188 

… 

validation_action 1 
email 151 digit-16 1 
last_name 105 ssn-middle 1 
first_name 105 secure_q 1 
username 48 job_title 1 
middle_name 46 ssn-swiss-postfix-2 1 
phone 46 date-yyyy-mm-dd 1 
date-mm/dd/yyyy 43 unknown_hidden 1 
zipcode 41 ssn-postfix 1 
date-mm/yyyy 28 user_status 1 
city 25 visa_number 1 
street-line-2 13 ssn-prefix 1 
street-line-1 13 Total 985 
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3) Results and Discussion 
 The average accuracies that each method achieved when 
the considered percentages are used as training data are shown 
in Table V. First, with less training data, the rule-based 
approach (RB) performed better than the proposed approach 
(NL). However, the effectiveness of NL increased with the 
percentage of training data, while RB performed oppositely. As 
a result, the proposed approach performs comparably to the 
rule-based one with 50% or more training data. Second, while 
RB+NL-n achieved slight improvement in general, using the 
proposed approach to help pick the correct topic from multiple 
candidates by the rule-based approach (RB+NL-m) can greatly 
improve the accuracy. Therefore, the improvement of RB+NL-
b over RB ranges from 8.8% (6.63% increase) to 22% (15.95% 
increase). 

To determine whether the improvements we observed in 
average accuracies are statistically significant, we conducted a 
t-test for matched pairs [15] for the NL, RB and RB+NL-b 
approaches. That is, the accuracies of these three methods in 
each trial are considered matched pairs to each other. We 
assume that there is no difference in the average accuracies of 
NL and RB, NL and RB+NL-b and RB and RB+NL-b, 
respectively (the null hypotheses). If the computed p-value is 
less than 0.05 (the significance level), statistical practitioners 
often infer that the null hypothesis is false. Table VI shows the 
p-values computed for these three methods in our experiments. 
It indicates that the observed differences between these three 
methods are statistically significant except for the one between 
NL and RB using 50% training data. 

To further understand the experimental results, for 
experiments adopting the rule-based approach, we investigated 
the number of identified topics and created feature strings from 
the training data. Also, the number of inferred input fields and 
the percentage of no-matches and multiple-topic ones were 
recorded. First, as Table VII shows, hundreds of feature strings 
were created for mappings to tens of topics, which indicates 
that the rules for input topic identification could be application- 

TABLE V.  AVERAGE ACCURACIES ACHIEVED BY DIFFERENT METHODS 
WHEN THE CONSIDERED PERCENTAGES ARE USED AS TRAINING DATA. 

% 
training 

Accuracy (%) 

NL RB RB+ 
NL-n 

RB+ 
NL-m 

RB+ 
NL-b 

10% 70.42 75.60 75.70 82.13 82.23 
20% 72.48 75.81 75.85 85.00 85.04 
30% 72.66 75.04 75.05 86.18 86.19 
40% 72.67 74.14 74.14 86.86 86.86 
50% 73.26 73.50 73.50 87.47 87.47 
60% 73.29 72.64 72.64 87.54 87.54 
70% 74.05 72.44 72.44 88.39 88.39 

TABLE VI.  COMPUTED P-VALUES OF T-TEST FOR MATCHED PAIRS. 

% 
training NL & RB NL & RB+NL-b RB & RB+NL-b 

10% 0.0000 0.0000 0.0000 
20% 0.0000 0.0000 0.0000 
30% 0.0000 0.0000 0.0000 
40% 0.0000 0.0000 0.0000 
50% 0.1677 0.0000 0.0000 
60% 0.0004 0.0000 0.0000 
70% 0.0000 0.0000 0.0000 

TABLE VII.  AVERAGE NUMBER OF IDENTIFIED TOPICS AND CREATED 
FEATURE STRINGS, INFERRED, NO-MATCH AND MULTIPLE-TOPIC INPUT FIELDS 

IN THE EXPERIMENTS WITH RULE-BASED APPROACH. 

% 
training # topic # 

string 
# 

inferred 
% no-

matches 

% 
multiple-

topic 
10% 19.96 196.86 885.56 12.85 16.30 
20% 27.71 247.29 789.04 9.37 22.44 
30% 33.78 281.59 690.75 7.87 26.52 
40% 38.77 306.52 592.93 7.11 29.24 
50% 44.10 328.63 491.82 6.51 31.32 
60% 47.93 343.88 394.46 6.44 32.36 
70% 52.01 362.84 295.25 5.62 33.60 

 
specific, and the manual effort could be significant. Second, 
with larger proportion of training data, less no-match and more 
multiple-topic elements were inferred. The observation is 
reasonable because with more training data introduced, the rule 
set derived from them is larger, and more input fields are likely 
to match multiple rules for different topics. For example, with 
50% training data, more than 30% of the inferred elements 
were multiple-topic. We believe that this observation 
contributes to both the decreased accuracy of RB and the 
improvement of RB+NL-m on increased training data. In 
addition, the improvement of RB+NL-n comparing with RB is 
not significant, which could result from two reasons. First, the 
average number of no-match elements is not high. Second, 
from Table IV we can see that many topics of the input fields 
appear only a few times. In fact, 12.4% of total topics appear 
less than 10 times, and identifying these topics could be 
difficult even with assistance of our method because the input 
fields are not included in the training data. 

Recommendation. If reducing manual effort in crawling-
based web application testing is the primary concern, our 
method may be a good choice to adopt in input topic 
identification because the number of topics is far less than the 
number of rules (feature strings) required for mapping the 
topics, and the effort of labeling could be less than the effort of 
creating rules. In addition, the proposed method performs 
better with more training data. On the other hand, if the 
identification accuracy is the primary concern, the proposed 
approach can be integrated with the rule-based approach with 
little effort, because users have to go through input fields to 
construct rules, and the labeling required for the proposed 
method could be done simultaneously. 

B. GUI State Comparison  
1) Subject GUI States 
QNAP Q’Center3 is an AJAX web application for 

monitoring and managing multiple QNAP NAS (Network 
Attached Storage). It contains 1276 files and 324346 lines of 
code in v1.3.503, including 971 Python files (173258 LOC) 
and 133 JavaScript files (95917 LOC). From the test suites of 
the automatic GUI regression test on its daily build, we 
instrumented the test scripts to collect the GUI states in HTML 
after the execution of each test step. Also, a test engineer in the 
development team of Q’Center manually clustered the GUI 
states by examining the corresponding screenshots. Table VIII 
shows the characteristics of the collected data. The value of the 

                                                           
3 https://www.qnap.com/solution/qcenter/index.php?lang=en 

145



TABLE VIII.  THE COLLECTED GUI STATES AND NUMBER OF DISTINCT 
CLUSTERS 

Test Suite Description # Test 
Cases 

# GUI 
States 

# 
Clusters 

install_wiz Installation wizard 6 60 22 
rule NAS Rule management 3 237 80 

server_add NAS addition and 
removal 6 200 88 

server_app App management and 
config backup 7 207 42 

settings Account and server 
settings management  8 451 84 

 

subject data is that it comes from real testing scenarios in 
industry. The GUI state equivalence information is also 
valuable because it can be used to know the effectiveness 
among different techniques for state equivalence and the gaps 
between the results produced by algorithms and human. 

2) Experimental Setup 
To understand the effectiveness of the proposed approach 

in computing GUI state equivalence, we clustered the GUI 
states with the proposed approach and other two abstraction 
mechanisms, respectively. The F-measure (the harmonic mean 
of precision and recall) of these three methods was calculated 
using the correct answers from previous subsection. 

To apply the proposed approach (NL) in state comparison, 
for GUI states in HTML, we extracted their feature vectors 
from the enclosed text of the visible DOM elements. Fig. 9 
shows an example of the extracted vector. Afterwards, we 
transformed the feature vectors as described in Section III 
(without the labeling stage) to calculate their similarities. If the 
similarity of an encountered state si with an existing state sj 
exceeds a threshold (0.99999 in this experiment), si is 
considered equivalent to sj. Otherwise, si would belong to a 
new cluster of itself. If there are multiple candidate clusters for 
a new state, a voting process similar to the one in Section III-D 
would be adopted to choose one cluster from the candidates. 
After inferred, a state would be put into the training corpus for 
future comparisons. 

 One of the abstraction mechanisms used in this experiment 
is WhiteSpace (WS). It replaces all line breaks and tabs with 
white space and then collapses white space in the HTML 
before computing state equivalence. This is a common oracle 
comparator because browsers also do so, and additional white 
space may not affect user’s interpretation on a web page. The 
other abstraction mechanism used in this experiment includes 
three steps. First it keeps only the tag names and the 
corresponding important attributes of a HTML, and then 
applies WS abstraction to remove the line breaks and extra 
white space. Finally it removes timestamps shown in the 
HTML. This abstraction mechanism (TagAttrWD) is reported 
an oracle comparator with the highest mean effectiveness in 
fault detection [29]. We considered the required attributes from 
HTML specification [16] and name, type and value for input 
tags as important attributes, as designated in [29]. 

 In clustering result evaluation, true positive is the number 
of pairs of data points belonging to the same cluster and 
classified as the same group. False positive is the number of 
pairs of data points belonging to different clusters and  

 
classified as the same group. True negative and false negative 
are defined similarly. By counting the positives and negatives, 
we can calculate the precision, recall and F-measure of the 
clustering results. 

3) Results and Discussion 
 Table IX shows the F-measure of the clustering results with 
different methods. First, WS had the worst effectiveness in the 
experiments. Second, TagAttrWD had better F-measure than 
WS, which is consistent with the experimental results in fault 
detection effectiveness conducted in [29]. Finally, the proposed 
method outperformed other two abstraction techniques in three 
of the five test suites, which means it can better distinguish 
encountered GUI states when executing the three test suites. In 
the other two test suites, the effectiveness of the proposed 
approach is still better than WS and close to the best 
(TagAttrWD). 

 The proposed approach may better distinguish GUI states 
in crawling-based web application testing, because it considers 
semantic similarity among states when computing their 
equivalence, which is analogous to what human does in the 
same situation. Human doesn’t rely on the DOM structures but 
the text on web pages to determine the equivalence. Therefore, 
it is possible that two web pages with totally different DOM 
structures are considered identical for testing purpose. We 
believe that it is one of the reasons the proposed approach 
outperformed other two conventional abstraction mechanisms. 
Nevertheless, most of the clustering results are far from the 
correct ones labeled by human (over two-thirds of the F- 

TABLE IX.  F-MEASURE OF THE CLUSTERING RESULTS 

Test Suite F-measure 
WS TagAttrWD NL 

install_wiz 0.7817 0.8194 0.7826 
rule 0.3241 0.3599 0.4443 
server_add 0.4281 0.4751 0.6776 
server_app 0.1532 0.1809 0.3559 
settings 0.1180 0.4512 0.4156 

The HTML: 

 
The Extracted Feature Vector: 

['the', 'demo', 'form', 'please', 'fill', 'the', 'form', 'family', 
'name'] 
Fig. 9. An GUI state in HTML and its extracted feature vector 
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measure are smaller than 0.5). Two observations might 
contribute to this issue. First, a test engineer may consider 
consecutive GUI states as the same when doing a series of 
input actions (e.g. filling a form). Second, as describe in 
Section II, a test engineer may ignore a changed visible DOM 
element, because the element is irrelevant to what he cares 
about under current testing scenario.  

 Recommendation. Experimental results showed promise 
for adopting semantic similarity in computing state 
equivalence. Also, it is possible to integrate the proposed 
approach with conventional abstraction mechanisms to 
improve the effectiveness of GUI state equivalence checking. 

C. Threats to Validity 
The implementation of the proposed approach could affect 

the validity of results. To ensure the correctness, we adopted 
mature and open-sourced libraries such as gensim [23], 
BeautifulSoup [9] and Selenium Webdriver [31] in key steps of 
our implementation. In input topic identification, a single 
category of forms (graduate program registration) used and the 
setup of the evaluation such as the labeled topics and derived 
rules might affect generality of the results. However, the topics 
(e.g. email, password and last_name) in the subject forms are 
common in other categories of forms. We also open our source 
code and data to the public for review and replication. In GUI 
state comparison, the results on data from a commercial 
application could not be generalize to web applications in other 
categories, but the experiments on data from real-world 
scenarios are still valuable. 

VI. RELATED WORK 
Crawling-based techniques for modern web applications 

have been studied [3], [6], [11], [19], [28], [33] and adopted 
[1], [5], [7], [20], [27], [30] in automated web application 
testing. Raghavan and Garcia-Molina [28] presented an 
operational model to crawl the content hidden behind search 
forms. Their work is highly related to ours in terms of 
analyzing labels to understand the topics of form elements. 
However, they neither considered semantic similarity nor 
addressed GUI state comparison. Duda et al. [11] proposed 
algorithms to crawl AJAX-based web applications and index 
the states. Similarly, a tool developed by Mesbah et al. [6] 
called Crawjax tries to infer a finite state machine of an AJAX-
based web application through dynamically analyzing the 
changes of the DOM contents. The tool is also used for 
detecting and reporting violated invariants [5] and cross-
browser incompatibilities [27] in web applications. Schur et al. 
[19] presented a crawler called ProCrawl to extract abstract 
behavior models from multi-user web applications, focusing on 
building a model close to business logic. A crawler developed 
by Dallmeier et al. [33], WebMate, can autonomously explore 
a web application, and use existing test cases as an exploration 
base. Marchetto et al. [3] extracts a finite state machine from 
existing execution traces of web applications, and generates 
test cases consisting of dependent event sequences. In addition, 
Fard et al. [7] combined the knowledge inferred from manual 
test suites with automatic crawling in test case generation for 
web applications. Thummalapenta et al. [30] presented a 
technique to confine the number of a web application’s GUI 
states explored by a crawler with existing business rules. 

Nevertheless, none of these studies considers leveraging 
semantic similarity in input value handling or GUI state 
comparison as our work does. 

About the measurement of crawling diversity or 
effectiveness, Alshahwan et al. [20] proposed crawlability 
metrics to quantify the extent to which a crawler is able to 
explore the web pages or forms. These metrics combine 
dynamic measurements such as statement coverage, with static 
information such as lines of code. Moreover, Fard and Mesbah 
[1] presented a couple of metrics such as JavaScript code 
coverage, path diversity and DOM diversity to assess the test 
model derived by a crawler. These measurements may be 
tailored to evaluate the effectiveness of our techniques. 

To verify that the executed test cases produce expected 
results in web application testing, Sprenkle et al. [29] proposed 
a suite of automated oracle comparators. The comparators were 
applied to expose faults by reporting the difference between the 
actual and expected HTML output. The fault detection 
effectiveness of individual comparators and selected 
comparator combinations were analyzed by calculating their 
precision (i.e., if the reported differences were due to faults) 
and recall (i.e., if all faults were revealed by reported 
differences). While one of their comparator combinations, 
TagAttrWD, was used in our experiment, our work focuses on 
the ability of different abstraction mechanisms to correctly 
distinguish new GUI states during crawling.  

Studies on GUI ripping for testing purpose [4], [12] and 
automatic black-box testing on mobile applications [2], [32] 
are also related to our work in terms of how they explore the 
interfaces of the applications and derive test models with 
dynamic analysis. As a result, the proposed technique could be 
applied in these contexts. 

 With respect to using latent topic models in software testing 
and debugging, Maletic and Marcus [17] adopted LSI to cluster 
similar files of source code for software maintenance or 
reengineering. Andrzejewski et al. [13] approached debugging 
using a variant of LDA (Latent Dirichlet Allocation) [14] to 
identify weak bug topics from strong interference. LDA was 
also adopted by Lukins et al. [26] on a developer’s input such 
as a bug report to localize faults statistically. Later, DiGiuseppe 
and Jones [21], [22] adopted natural-language techniques such 
as feature extraction and Tf-idf in fault description and 
clustering. To our knowledge, this paper is the first to apply 
latent topic models in crawling-based web application testing. 

VII. CONCLUSION 
 In this paper, we proposed a natural-language technique to 
improve the effectiveness of crawling-based web application 
testing. By considering semantic similarities between a training 
corpus and a DOM element to be inferred, input topic 
identification, GUI state comparison and clickable detection 
can be performed with the proposed approach. In the future, we 
plan to evaluate how the proposed techniques impact overall 
crawling efficacy with more data and other topic model 
alternatives such as LDA. Moreover, the proposed feature 
extraction algorithm could be improved with more information 
about DOM elements such as comments.  
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