
Using Semantic Similarity in Crawling-based Web
Application Testing

Jun-Wei Lin

Dept. of Informatics
University of California, Irvine, USA

junwei.lin@uci.edu

Farn Wang
Dept. of Electrical Engineering

National Taiwan University, Taiwan
farn@ntu.edu.tw

Paul Chu
QNAP Inc.

paulchu@qnap.com

Abstract— To automatically test web applications, crawling-
based techniques are usually adopted to mine the behavior
models, explore the state spaces or detect the violated invariants
of the applications. However, their broad use is limited by the
required manual configurations for input value selection, GUI
state comparison and clickable detection. In existing crawlers,
the configurations are usually string-matching based rules
looking for tags or attributes of DOM elements, and often
application-specific. Moreover, in input topic identification, it
can be difficult to determine which rule suggests a better match
when several rules match an input field to more than one topic.
This paper presents a natural-language approach based on
semantic similarity to address the above issues. The proposed
approach represents DOM elements as vectors in a vector space
formed by the words used in the elements. The topics of
encountered input fields during crawling can then be inferred by
their similarities with ones in a labeled corpus. Semantic
similarity can also be applied to suggest if a GUI state is newly
discovered and a DOM element is clickable under an
unsupervised learning paradigm. We evaluated the proposed
approach in input topic identification with 100 real-world forms
and GUI state comparison with real data from industry. Our
evaluation shows that the proposed approach has comparable or
better performance to the conventional techniques. Experiments
in input topic identification also show that the accuracy of the
rule-based approach can be improved by up to 22% when
integrated with our approach.

Keywords—Web application testing; semantic similarity; GUI
testing

I. INTRODUCTION
Web applications nowadays play important roles in our

financial, social and other daily activities. Testing modern web
applications is challenging because their behaviors are
determined by the interactions among programs written in
different languages and running concurrently in the front-end
and the back-end. To avoid dealing with these complex
interactions separately, test engineers treat the application as a
black-box and abstract the DOMs (Document Object Models)
presented to the end-user in the browser as states. The
behaviors of the application can then be modeled as a state
transition diagram on which model-based testing can be
conducted. Since manual state exploration is often labor-
intensive and incomplete, crawling-based techniques [1], [5],
[6], [7], [11], [19], [27], [28], [30], [33] are introduced to
systematically and automatically explore the state spaces of

web applications. Although such techniques automate the
testing of complicated web applications to a great extent, their
broad use is limited by the required manual configurations for
applications under test (AUT). First, many web applications
need specific input values to their input fields in order to access
the pages and functions behind the current forms. To achieve
proper coverage of the state space of the application, a user of
existing crawlers has to set the rules for identifying the topics
of encountered input fields in advance so as to feed appropriate
input values at run time. Typical rules are string-matching
based, mapping the DOM representations of input fields to
their topics. For example, Fig. 1 illustrates an input field
requesting a last name, a value of topic last_name. To identify
the topic of the input field, the values of its attributes such id
and name have to be compared with a feature string
“last_name” and an appropriate value can then be determined
by the identified topic. Because input values in different topics
such as email, URL and password are necessary for a web page
requesting them, the manual configuration has to be repeated.

 Second, ability to properly distinguish new GUI states from
explored ones is fundamental to a crawler. Web pages may
have contents irrelevant to testing such as advertisements or
current time. As a result, existing crawlers allow some
abstraction mechanisms when determining the equivalence of
GUI states by comparing their DOMs. A commonly adopted
abstraction technique is DOM content filtering. Users can
include or exclude the DOM elements with specific tags,
attributes or enclosed text in state comparison. Similarly, the
abstraction may not be effective for all applications and usually
need to be tailored [30].

In Browser:

The DOM Element:

The Extracted Feature Vector:

['last', 'name', 'text', 'last', 'name', 'last', 'name', '35']
Fig. 1. An example input field requesting a value of the topic
last_name

10th IEEE International Conference on Software Testing, Verification and Validation

978-1-5090-6031-3/17 $31.00 © 2017 IEEE

DOI 10.1109/ICST.2017.20

138

Finally, clickables such as links and buttons are DOM

elements a crawler interacts with to trigger events on or submit
requests to the AUT. While some crawlers have preset rules for
common clickables such as <a> or <button>, application-
specific rules may be required. For example, Fig. 2 illustrates a
sign-in button represented by from a commercial
application1. Because a rule to click all is too general to
be built in existing crawlers, a configuration checking the class
attribute of has to be manually set.

Another drawback of adopting string-matching based rules
in crawling-based web application testing is that the rules are
often application-specific, since the naming conventions for the
values of attributes of DOM elements are diverse in web
applications. Moreover, in input topic identification, it could be
difficult to determine the topic of an encountered input field
when it matches multiple rules for different topics. To address
these issues, several observations suggest the possibility of
using natural-language techniques:

• In markup languages like HTML and XML, the words
used for attributes of DOM elements such as id, name,
type and maxlength are extremely limited. Therefore,
unlike traditional natural-language tasks such as
sentimental analysis which need large corpora to build
the dictionaries, the sizes of representative corpora for
the tasks in crawling-based web application testing
could be moderate.

• Human interacts with web applications through the text
in natural language but not the DOM structures or
attributes. Therefore, abundant natural language
information in labels or attribute values can be
leveraged to help choose appropriate actions for testing.

• While the words and sentences used for input fields of
the same topic may be different among web
applications, they are often semantically similar. For
example, different websites may use “last name”,
“surname”, “family name” or other related words to
describe and name the input fields taking the user’s last
name.

Inspired by above observations, this paper presents a novel
and natural-language technique to address the issues of rule-
based approach used in crawling-based web application testing.
For the interested DOM elements such as input fields, divisions
or even whole web pages, we extract their feature vectors
consisting of the words used in the attributes, the nearest labels
or the enclosed text. An example feature vector is illustrated in

1 https://www.qnap.com/solution/qcenter/index.php?lang=en

Fig. 1. We then apply a series of transformations including
Bag-of-words, Tf-idf (Term frequency with inverse document
frequency) and LSI (Latent Semantic Indexing) [10] to these
vectors to represent them with multi-dimensional, real-number
vectors. Later, with a training corpus, for a new DOM element
we can figure out its most similar vectors in the corpus by
calculating the cosine similarities. This similarity information
can then be used for input topic identification, state
equivalence checking or clickable detection. In input topic
identification, the proposed approach is under a supervised
learning paradigm. That is, each feature vector in the corpus
has to be labeled with a topic. A running example will be
provided in Section III. In GUI state comparison and clickable
detection, the proposed approach is under an unsupervised
learning paradigm. In other words, we can determine whether a
DOM element is equivalent to an existing state by its similarity
with the vectors in the corpus without additional labeling. We
believe that the proposed method can relieve the burden of
constructing rules for unexplored web applications and
enhance existing crawling-based techniques.

To evaluate the proposed approach, we conducted
experiments on input topic identification and GUI state
comparison, respectively. First, for input topic identification,
we collected 100 real-world forms, and split them into training
and testing data to validate the effectiveness. The experimental
results show that when the proportion of training data
increases, our approach performs comparably to the rule-based
one. In addition, the accuracy of the rule-based approach is
significantly improved by up to 22% when integrated with the
proposed technique. Second, for GUI state comparison, we
used the data from industry to evaluate the effectiveness of
different abstraction mechanisms for state equivalence. The
proposed approach outperformed other mechanisms in three of
the five dataset, and had close performance to the best
mechanisms for the rest.

The main contributions of this paper include:

• A novel technique using semantic similarity in
crawling-based web application testing to address the
limitations of the rule-based approach for input topic
identification, GUI state comparison and clickable
detection.

• The implementation and evaluation of the proposed
approach in input topic identification and GUI state
comparison. Experiments with 100 real-world forms
and data from industry show promise for our approach.
The source code and data of experiments on input topic
identification are also publicly available2 to make them
reproducible.

• A discussion of usage scenarios of the proposed
technique to help reduce the manual effort or increase
the effectiveness of existing crawlers.

II. BACKGROUND AND MOTIVATION
Today’s web applications interact intensively with the users

by dynamically changing the DOMs using client-side

2 https://github.com/jwlin/icst2017

In Browser:

The DOM Element:

Fig. 2. An example sign-in button

139

JavaScript. To capture the behaviors of such applications,
crawling-based technique plays a significant role [34] in
automated web application testing [1], [5], [6], [7], [11], [19],
[27], [30], [33]. The technique analyzes the data and models
collected from dynamic exploration of the applications.
Although exhaustive crawling can cause state explosion
problem in most industrial web applications that have huge
state spaces, the navigational diversity of the crawling is
important for deriving a test model with adequate functionality
coverage [1], and achieving this diversity is still challenging
[20], [28].

While there was a crawling technique ignoring text input
[11], most existing crawlers [6], [19], [33] operate with
randomly generated or user-specified data. To specify the data
used in particular input fields, users have to provide feature
strings (i.e., the values of the DOM attributes such as id or
name of the input fields) in rules to identify the topics. For
example, if we want “James” for an input field with id
“lastName”, we could add a configuration similar to the
following when using a crawler:

input.id("lastName").setValue("James")

Implicitly, the configuration creates the following rules: ���� ��� 	
��
� � ����
�� �
����
��� � ������������� ���������������
����
�� ���������������
����
� � ���� ��
� � ��!������
Here {"lastName"} is a set of feature strings for the topic

last_name. The feature strings in the set would be used to
match all the substrings of the id, and the set may be manually
expanded with more feature strings such as “surname” or “last”
when more input fields of the same topic are encountered.
{"James"} is the data set we prepare for input fields with the
topic.

The string-matching based rules for input topic
identification are widely used in existing crawlers.
Nevertheless, the rules for one web application may not work
for another. As a result, users may have to reconstruct or adjust
the rules for new AUT. For instance, Table I shows input fields
collected from four real-world forms. The first input field
contains two attributes, id and name, both with values
“firstName”. To identify the input field and assign values used
for it, the rule containing a feature string “first” is created to
match the id or name. However, as illustrated, the rule derived
from the first input field does not work for the second one
which needs feature string “fn” in the rule. Moreover, both
rules fail in identifying the third input field of the same topic,
because the id and name look randomly generated. To address

TABLE I. EXAMPLE INPUT FIELDS AND RULES FOR IDENTIFYING THEIR
TOPICS. STRING: FEATURE STRING.

Input Field Topic String
<input id="firstName" name="firstName"> first_name "first"
<input id="aycreatefn" name="aycreatefn"> first_name "fn"
<input id="textfield-1028-inputEl"
name="1023000000003015"> first_name (*)

<input id="permanenttel"
name="permanenttel"> phone "tel"

<input id="aycreateln" name="aycreateln"> last_name "ln"
* To be discussed

this issue, our approach takes the nearest labels or descriptions
of a DOM element into consideration. The intuition is that the
nearest labels are likely the text about the input field for human
to read, and if so, the text for the same topics of input fields is
often semantically similar even in different websites. In fact,
the third input field was successfully identified in our
experiments.

Another issue of the rule-based approach for input topic
identification is that it is difficult to determine the topic if there
are multiple candidates. For example, after setting the rules
containing the feature string “tel” for the fourth input field and
“ln” for the fifth input field in Table I, the fifth input field will
be categorized as phone and last_name simultaneously because
both rules match the id “aycreateln”. In contrast, the similarity
information with the input fields in the corpus could help
resolve this ambiguity, and it worked for the above example in
our experiments.

Constructing accurate state transition models for testing is
difficult because of the dynamism in AJAX web applications
nowadays. To focus on only interested parts of the web pages
when computing state equivalence, many abstraction
techniques are proposed, and most of them are based on DOM
content filtering [5], [6], [24], [29], [30]. That is, to eliminate
specific nodes of DOM trees such as ones containing time
stamps, invisible blocks or tags with particular attributes when
examining the equivalence of two documents. These
abstraction mechanisms are sometimes called oracle
comparators [5], [6], [29] for users of a crawler to choose. For
example, in the tool implemented in [5], users can use
DateOracleComparator to ignore time stamps on web pages.
As a result, two identical pages except for the different time
stamps would be treated as the same GUI states. However, the
state-equivalence notions are often application-specific and
may need to be tailored [6], [30]. For instance, a test engineer
probably pays attention on a particular window on top and
intentionally ignores changes in the background even if they
are visible. As a result, two web pages with different DOM
structures might be considered the same GUI state. Instead of
string-matching or DOM-checking, our approach addresses the
issue by similarity with explored web pages (vectors in the
corpus). We consider only text on web pages and reduce the
effort of picking or implementing different DOM filters. Our
evaluation shows the proposed approach has better or
comparable performance to previous abstraction techniques in
the literature.

 Clickables such as links or buttons on web pages are
important for crawling-based web application testing, because
a crawler has to click them to interact with the AUT. Common
clickables such as <a> and <button> can be detected and fired
by a crawler following HTML specification [16], but as
mentioned in Section I, manual configurations may be required
to detect some uncommon clickables. Because the clickables
are also DOM elements, our approach may be adopted to detect
them.

 In unsupervised document analysis, vector transformations
such as Tf-idf and LSI are algorithms that project a text corpus
to a vector space by examining the word statistical co-
occurrence patterns [10]. The concept behind Tf-idf is that the

140

words appearing frequently in a document and infrequently in
other documents could be used to uniquely represent the
document. Furthermore, LSI is used to reduce the rank of a
word-document matrix by applying Singular Value
Decomposition [25], a mathematical technique in linear
algebra. Each dimension of the rank-reduced vector space
hopefully represents a latent concept in the text. In this paper,
we apply these transformations to feature vectors extracted
from interested DOM elements, and measure how similar two
vectors are by calculating the cosine similarity (i.e., the cosine
of the angle).

III. APPROACH
An overview of our approach is depicted in Fig. 3. First, we

extract feature vectors from the collected DOM elements to
build a training corpus. Each vector in the corpus has to be
labeled by its topic if the corpus is for input topic
identification. However, we may label a group of vectors as the
same topic at a time instead of one by one. The detail will be
provided in Section III-C. Afterwards, for encountered DOM
elements, we extract and transform them to project them into
the vector space constructed by training data, and do inference
based on their similarities to vectors in the training corpus.
Here we provide a running example and detailed explanation
about how to exploit the proposed technique on input topic
identification. Once the topics are identified, the corresponding
values can then be selected from a pre-established databank
[28] or generated by data models such as smart profile [18].
The same concept can be applied to state comparison and
clickable detection without significant changes.

A. Feature Extraction
 A novelty of this paper comparing with other crawling-
based techniques for web application testing is that we consider
not only the attributes but also the nearby labels or descriptions
of DOM elements for input topic identification. Algorithm 1
shows how it is achieved. First, we specify DOM attributes
such as id, name, placeholder and maxlength which concern
input topic identification in an attribute list, and the values of
matched attributes of the DOM element will be put into the
feature vector (line 2 to 4). Moreover, to find the
corresponding descriptions, we search the siblings of the DOM
element for tags such as span and label in a tag list and put the
texts enclosed by the tags into the feature vector (line 11 to 18).
If no such tags are found, the search will continue on the
DOM’s parent recursively for several times (line 20). In
addition, we perform a couple of normalizations such as
special character filtering and lowercase conversion to the
words in the extracted feature vector.

 A running example is shown in Fig. 4. For the first input
field in Fig. 4, the feature vector was first constructed with its
values of attributes: “text”, “last”, “name”, “last”, “name” and
“35” (line 2 to 4). Then in findClosestLabels(), because the
input element has no siblings, the algorithm searched siblings
of its parent (line 20). In the second iteration of the search, a
 with text “Last Name” under <th> was found, and the
words “last” and “name” were put into the feature vector. The
feature vectors for the input fields in Fig. 4 are shown in Fig. 5.

Fig. 3. An overview of the proposed approach

Fig. 4. A running example

['last', 'name', 'text', 'last', 'name', 'last', 'name', '35']
['email', 'text', 'email', 'email', '35']
['password', 'password', 'password', 'password', '25']
['verify', 'password', 'password', 'check', 'password',
 'check', '25']

Fig. 5. The extracted feature vectors from the example in Fig. 4

141

B. Vector Transformation
After all DOM elements for training are represented as

feature vectors in a corpus, three transformations are applied to
the vectors sequentially: Bag-of-words, Tf-idf and LSI [10].
These transformations convert the vectors from words to multi-
dimensional and real-number vectors, and each dimension of
the vectors hopefully represents a latent concept consisting of
the words in the corpus. In the following paragraphs we use
document and feature vector interchangeably because they are
identical in the context of this section.

First, Bag-of-words transformation is used to represent
each document in natural language in a corpus as an integer
vector based on its word counts, and the dimension of each
vector is the number of distinct words (the “dictionary”) in the
corpus. For example, Table II shows that given the four
documents in Fig. 5, there are nine distinct words in the
documents. As a result, the documents can be represented by
nine-dimensional vectors as shown in Fig. 6. We can see the
third vector is [(5, 1), (6, 4)] because the document is
['password', 'password', 'password', 'password', '25'] in which
the word with index 5 (“25”) appears once and the word with
index 6 (“password”) appears four times. We use sparse
representation, i.e. only (index, value) pairs for the dimensions
with non-zero value, to make the following explanation clearer.
Bag-of-words transformation is a simplified representation
because it disregards grammar and word order in documents.
Fortunately, for DOM elements in web applications we do not
care about these two properties either.

 Second, Tf-idf transformation converts the integer-value
Bag-of-word vectors to real-value ones. Intuitively, if a word
appears frequently in a document and infrequently in all other
documents, the word could uniquely represent the document.
Tf-idf assigns weights to words in documents based on this
intuition. A common weighting scheme is: ft,d×(log2)(N/nt). ft,d
is the frequency of the word t in document d, N is the number
of all documents and nt is the number of documents in which t
appears. The Tf-idf representations of the documents in Fig. 5
are shown in Fig. 7. Taking the third document as an example,
for the word “25” (index 5), the ft,d is 1 and nt is 2 because it
appears once in the document and twice in all four documents,
so the Tf-idf is 1. For the word “password” (index 6) appearing
four times in the document, the ft,d is 4 and nt is 2, and the Tf-
idf is 4. Therefore, we have [(5, 1), (6, 4)] as the Tf-idf
representation of the third document. After normalizing the
vector to unit length, we have [(5, 0.2425), (6, 0.9701)]
(rounding off after the 4th place and so are the following values
in matrices) as shown in Fig. 7.

TABLE II. THE DICTIONARY OF DOCUMENTS IN FIG. 5.

Word Index
“text” 0
“last” 1

“name” 2
“35” 3

“email” 4
“25” 5

“password” 6
“verify” 7
“check” 8

Finally, LSI transformation tries to deal with the problem

that different words used in the same context may have similar
meanings. The transformation reduces the dimension of the
vector space constructed by the words and documents in a
corpus using a mathematical technique called Singular Value
Decomposition (SVD) [25]. Each dimension of the rank-
reduced vector space hopefully represents a latent concept
contained in documents. To do LSI transformation, we first
describe the documents as a term-document matrix X, and then
decompose X by SVD as X=U�VT. Here U and VT are
orthogonal matrices that could represent latent concepts in the
documents and the coordinates of the documents in the latent
vector space, respectively. � is a diagonal matrix that could
state the importance of each latent concept. For example, after
Bag-of-word and Tf-idf transformations, the documents in Fig.
5 can be written as a term-document matrix X as:

After decomposing X as U�VT, U is

Each column in U could be interpreted as a latent concept in
the documents. For example, the first concept c1 in the corpus
is:

"#�$$$% & �$'� " #�((() & �*+,,-./0� " #�%12' & �34/567�" #�8'2# & �9:�9;�
and so are the rest three concepts. Note that the latent concepts
are justified on the mathematical level and probably have no
interpretable meaning in natural language. � is a diagonal

[(0, 1), (1, 3), (2, 3), (3, 1)]
[(0, 1), (3, 1), (4, 3)]
[(5, 1), (6, 4)]
[(5, 1), (6, 4), (7, 1), (8, 2)]

Fig. 6. The Bag-of-word representations of the documents in Fig. 5

[(0, 0.1162), (1, 0.6975), (2, 0.6975), (3, 0.1162)]
[(0, 0.1622), (3, 0.1622), (4, 0.9733)]
[(5, 0.2425), (6, 0.9701)]
[(5, 0.1644), (6, 0.6576), (7, 0.3288), (8, 0.6576)]

Fig. 7. The Tf-idf representations of the documents in Fig. 5

142

matrix containing singular values that could represent the
importance of latent concepts in descending order. VT is:

where each column of VT represents the coordinates of the
corresponding document in the vector space formed by the
latent concepts. For example, the coordinates of d3
(['password', 'password', 'password', 'password', '25'] in Fig. 5)
is [(0, -0.7071), (3, 0.7071)], which could be interpreted as that
the document consists of -0.7071×c1 and 0.7071×c4. With the
same transformations, we can transform a document q into the
latent vector space in which its coordinates q� = �-1UTq. The
similarity of q to other documents can then be calculated. In
practice, we compare documents in a rank-reduced vector
space by keep the k largest singular vales in � and their
corresponding vectors in U and VT.

C. Labeling
For input topic identification, each input field in the

training corpus has to be labeled by its topic, and we may take
advantage of the results from previous stages to facilitate the
labeling process. First, conceptually similar input fields are
expected to be close in the latent vector space. For example, d3
([(0, -0.7071), (3, 0.7071)]) and d4 ([(0, -0.7071), (3, -0.7071)])
look close, and both of them should be labeled as the topic of
password. In addition, the most appropriate latent concept for
representing d3 may be c1 or c4 since the absolute weights in
these dimensions are maximal (0.7071) over other dimensions,
and so is d4. As a result, we developed a quick heuristic to map
each input field to a latent concept in which its absolute value
is maximal in the transformed vector. For example d3 and d4
would be mapped to c1 or c4, and d1 and d2 would be mapped to
c2 or c3. Users can label all the input fields belonging to the
same latent concept at a time, or label some of them separately.
In addition, it should be noticed that when integrating the
proposed approach with rule-based method for input topic
identification, the labeling effort may be negligible because it
is implicitly included in rule construction.

D. Inference
 The inference is done by calculating the similarities of an
encountered DOM element with the ones in training corpus.
For a DOM element, we first extract its feature vector with a
dictionary built in previous stages, and apply the same Bag-of-
word and Tf-idf transformations to it. The converted vector is
then projected into the latent vector space formed by the
training corpus with the matrices in previous decomposition.
Finally, the similarity is calculated. Cosine similarity, i.e., the
cosine of the angle between two vectors is adopted, because it
is reported a good measure in information retrieval [8]. For
example, if we want to infer the topic of an input field in Fig. 8
with a corpus built from Fig. 5. We first obtain the Tf-idf
representation of the input field as [(0, 0.4472), (2, 0.8944)].
Note that only words “text” (index 0) and “name” (index 2) are
used in the representation because other words extracted from
the input field do not exist in the dictionary. Second, we
transform the representation into a rank-three approximation of

the latent vector space built from the corpus, as mentioned in
Section III-B. The coordinates of the input field to be inferred
would be: q� 3 = (�3)-1(U3)Tq3. That is

<%�$2'8 # ## %�#%(1 ## # #�2(%#=
>?

@
AA
AA
AB

#�#### "#�%288 #�#88%#�#### "#�C(C$ "#�'#$(#�#### "#�C(C$ "#�'#$(#�#### "#�%288 #�#88%#�#### "#�)1') #�1#%)"#�$$$% #�#### #�####"#�((() #�#### #�####"#�%12' #�#### #�####"#�8'2# #�#### #�#### D
EE
EE
EF

G

@
AA
AA
AB
#�CC1$##�(2CC###### D

EE
EE
EF

	 �#�#### "#�'%## "#�CC88�G

The cosine similarity of q� 3 with documents in the corpus is:

�?H IJ�
���KLMN O# "#�1#1% "#�1#1%PG� 	 #�221) �QH IJ�
���KLMN O# "#�1#1% #�1#1%PG� 	 #�#)21 �MH IJ�
���KLMN O"#�1#1% # #PG� 	 #�#### �RH IJ�
���KLMN O"#�1#1% # #PG� 	 #�####

 q� 3 is most similar to d1. Since d1 should be labeled as the
topic of last_name in previous steps, we can infer the topic of
the input field in Fig. 8 as last_name, too. Note that in this
example, the input field to be inferred uses randomly generated
id and name, and the description (“Family Name”) may contain
no keywords users have learned previously (e.g. “Last”) for
identifying the topic. The idea behind the proposed method is
that DOM elements are inferred by their usages of the used
words, which string-matching based approaches do not take
advantage of.

 When applying the proposed approach to input topic
identification, several input fields with different topics could be
extremely similar with the input field to be inferred. We handle
this condition with a voting process. First, the topic of the
vector in the latent space most similar to the one to be inferred
will be selected. If the difference of the similarities between the
top 5 most similar vectors is less than a threshold, the topic will
be determined by a voting process within the top 5 vectors. If
there are multiple candidates after the vote, a random choice
will be made. The voting process provides a chance to
correctly infer the topic when there are multiple vectors with
close similarity scores. For example, Table III shows that the
inferred topic is mistaken when only the most similar vector is
considered, but there is a chance to correct the mistake since
the voting process may guess the right topic in random choice
from last_name and password.

The DOM Element:

The Extracted Feature Vector:

['family', 'name', 'text, '1023000000003017', 'textfield',
 '1029', 'inputel']
Fig. 8. An input field to be inferred

143

TABLE III. AN EXAMPLE FEATURE VECTOR AND ITS TOP 5 MOST SIMILAR
VECTORS.

Similarity Vector Topic
(N/A) ['text', 'psurname', '30'] (To be inferred) last_name
0.9982

(Most similar) ['text', 'fname', '30'] first_name

0.9978 ['text, 'lname', '30'] last_name

0.9963 ['familyname', 'familyname',
'text', '30'] last_name

0.9296 ['conf', 'pword', password', '30'] password
0.9220 ['pword', 'password', '30'] password

E. Integration with the Rule-based Approach
 We may address the issues of the rule-based approach
mentioned in Section II by integrating it with the proposed
approach. Here we describe how to implement it in input topic
identification, and the same concept can also be adopted in
GUI state comparison and clickable detection in terms of
taking suggestions from the our method. First, for the input
fields not identified by the rule-based method, we output the
answer found by our technique. Second, for the input fields
matching multiple rules for different topics, we select the
answer with the help of our technique. Specifically, if the
natural-language answer appears in the candidates, the answer
will then be selected, or a random choice will be made among
all candidates including the natural-language one. In Section V,
we evaluated the effectiveness of the integration

IV. IMPLEMENTATION
We implemented the proposed method with Python 2.7. A

Python library, gensim [23] is used for vector space related
operations such as vector transformations and similarity
calculation. Interaction with web applications is supported by
Selenium Webdriver [31], and BeautifulSoup [9] is used to
parse and manipulate DOMs.

V. EVALUATION
To assess the efficacy of the proposed approach, we

conducted two experiments on input topic identification and
GUI state comparison, respectively. In the first experiment, we
collected and labeled input fields from 100 real-world forms,
and divided them as training and validation data to evaluate the
performances of the proposed and rule-based approaches. In
the second experiment, we used GUI states collected from real
tests in QNAP, a software company in Taiwan, to evaluate the
effectiveness of the proposed technique and different
abstraction mechanisms. In general, the research question is:

Q1. What is the effectiveness of the proposed approach in
input topic identification and GUI state equivalence
computation, comparing with conventional methods
used in crawling-based web application testing?

For input topic identification, there are two additional
research questions:

Q2. How much training data is required for the proposed
approach?

Q3. Can the proposed approach be used to improve the
rule-based one?

A. Input Topic Identification
1) Subject Forms
We collected 100 graduate program registration forms

across 9 countries in the world. There are totally 958 input
fields in the forms, ranging from two to fifty-eight for each
form, and 62 input topics such as password, email, first_name
and zipcode are labeled. Table IV shows some labeled topics
and the number of input fields for each topic. Each topic has to
be distinguished from each other to pass the forms. For
example, several date-related topics with different formats such
as date-mm/dd/yyyy, date-mm/yyyy and year-yyyy are labeled
for input fields in different forms taking date information. We
choose registration forms as subject data for several reasons.
First, they usually contain many different topics of input fields
such as user profile, date or URL, which is appropriate for our
evaluation. Second, the application states behind the forms are
important because they take information from the users and
then interact with them. However, the states are usually
difficult to be reached using existing crawlers with random
inputs. In addition, we want to evaluate the effectiveness of the
methods on inferring unknown forms with training data in the
same category.

2) Experimental Setup
 To understand how the proportion of training data affects
the performances of the methods under evaluation, we
randomly chose 10% to 70% of the subject forms as training
data, respectively. We derived labeled corpora, dictionaries and
vector space models for the proposed approach, and generated
rules (i.e., mappings from feature strings to topics) from the
input fields of the training forms for the rule-based approach.
All the artifacts were used to infer the input fields in the
remaining forms, and the inference accuracies (i.e., number of
correctly identified input fields over number of all inferred
input fields) were calculated. Experiments with 10% to 70%
training data were repeated 1000 times, respectively. Five
methods were evaluated in these experiments: (1) NL, the
proposed natural- language approach. (2) RB, the rule-based
approach. (3) RB+NL-n (no-match), using the NL approach to
identify input fields not recognized by RB, as discussed in
Section III-E. (4) RB+NL-m (multiple), using the NL approach
to help identify input fields from multiple candidates by RB, as
discussed in Section III-E. (5) RB+NL-b (both), using both (3)
and (4).

TABLE IV. LABELED INPUT TOPICS AND NUMBER OF INPUT FIELDS FOR
EACH TOPIC IN THE EXPERIMENT.

Topic # … Topic #
password 188

…

validation_action 1
email 151 digit-16 1
last_name 105 ssn-middle 1
first_name 105 secure_q 1
username 48 job_title 1
middle_name 46 ssn-swiss-postfix-2 1
phone 46 date-yyyy-mm-dd 1
date-mm/dd/yyyy 43 unknown_hidden 1
zipcode 41 ssn-postfix 1
date-mm/yyyy 28 user_status 1
city 25 visa_number 1
street-line-2 13 ssn-prefix 1
street-line-1 13 Total 985

144

3) Results and Discussion
 The average accuracies that each method achieved when
the considered percentages are used as training data are shown
in Table V. First, with less training data, the rule-based
approach (RB) performed better than the proposed approach
(NL). However, the effectiveness of NL increased with the
percentage of training data, while RB performed oppositely. As
a result, the proposed approach performs comparably to the
rule-based one with 50% or more training data. Second, while
RB+NL-n achieved slight improvement in general, using the
proposed approach to help pick the correct topic from multiple
candidates by the rule-based approach (RB+NL-m) can greatly
improve the accuracy. Therefore, the improvement of RB+NL-
b over RB ranges from 8.8% (6.63% increase) to 22% (15.95%
increase).

To determine whether the improvements we observed in
average accuracies are statistically significant, we conducted a
t-test for matched pairs [15] for the NL, RB and RB+NL-b
approaches. That is, the accuracies of these three methods in
each trial are considered matched pairs to each other. We
assume that there is no difference in the average accuracies of
NL and RB, NL and RB+NL-b and RB and RB+NL-b,
respectively (the null hypotheses). If the computed p-value is
less than 0.05 (the significance level), statistical practitioners
often infer that the null hypothesis is false. Table VI shows the
p-values computed for these three methods in our experiments.
It indicates that the observed differences between these three
methods are statistically significant except for the one between
NL and RB using 50% training data.

To further understand the experimental results, for
experiments adopting the rule-based approach, we investigated
the number of identified topics and created feature strings from
the training data. Also, the number of inferred input fields and
the percentage of no-matches and multiple-topic ones were
recorded. First, as Table VII shows, hundreds of feature strings
were created for mappings to tens of topics, which indicates
that the rules for input topic identification could be application-

TABLE V. AVERAGE ACCURACIES ACHIEVED BY DIFFERENT METHODS
WHEN THE CONSIDERED PERCENTAGES ARE USED AS TRAINING DATA.

%
training

Accuracy (%)

NL RB RB+
NL-n

RB+
NL-m

RB+
NL-b

10% 70.42 75.60 75.70 82.13 82.23
20% 72.48 75.81 75.85 85.00 85.04
30% 72.66 75.04 75.05 86.18 86.19
40% 72.67 74.14 74.14 86.86 86.86
50% 73.26 73.50 73.50 87.47 87.47
60% 73.29 72.64 72.64 87.54 87.54
70% 74.05 72.44 72.44 88.39 88.39

TABLE VI. COMPUTED P-VALUES OF T-TEST FOR MATCHED PAIRS.

%
training NL & RB NL & RB+NL-b RB & RB+NL-b

10% 0.0000 0.0000 0.0000
20% 0.0000 0.0000 0.0000
30% 0.0000 0.0000 0.0000
40% 0.0000 0.0000 0.0000
50% 0.1677 0.0000 0.0000
60% 0.0004 0.0000 0.0000
70% 0.0000 0.0000 0.0000

TABLE VII. AVERAGE NUMBER OF IDENTIFIED TOPICS AND CREATED
FEATURE STRINGS, INFERRED, NO-MATCH AND MULTIPLE-TOPIC INPUT FIELDS

IN THE EXPERIMENTS WITH RULE-BASED APPROACH.

%
training # topic #

string

inferred
% no-

matches

%
multiple-

topic
10% 19.96 196.86 885.56 12.85 16.30
20% 27.71 247.29 789.04 9.37 22.44
30% 33.78 281.59 690.75 7.87 26.52
40% 38.77 306.52 592.93 7.11 29.24
50% 44.10 328.63 491.82 6.51 31.32
60% 47.93 343.88 394.46 6.44 32.36
70% 52.01 362.84 295.25 5.62 33.60

specific, and the manual effort could be significant. Second,
with larger proportion of training data, less no-match and more
multiple-topic elements were inferred. The observation is
reasonable because with more training data introduced, the rule
set derived from them is larger, and more input fields are likely
to match multiple rules for different topics. For example, with
50% training data, more than 30% of the inferred elements
were multiple-topic. We believe that this observation
contributes to both the decreased accuracy of RB and the
improvement of RB+NL-m on increased training data. In
addition, the improvement of RB+NL-n comparing with RB is
not significant, which could result from two reasons. First, the
average number of no-match elements is not high. Second,
from Table IV we can see that many topics of the input fields
appear only a few times. In fact, 12.4% of total topics appear
less than 10 times, and identifying these topics could be
difficult even with assistance of our method because the input
fields are not included in the training data.

Recommendation. If reducing manual effort in crawling-
based web application testing is the primary concern, our
method may be a good choice to adopt in input topic
identification because the number of topics is far less than the
number of rules (feature strings) required for mapping the
topics, and the effort of labeling could be less than the effort of
creating rules. In addition, the proposed method performs
better with more training data. On the other hand, if the
identification accuracy is the primary concern, the proposed
approach can be integrated with the rule-based approach with
little effort, because users have to go through input fields to
construct rules, and the labeling required for the proposed
method could be done simultaneously.

B. GUI State Comparison
1) Subject GUI States
QNAP Q’Center3 is an AJAX web application for

monitoring and managing multiple QNAP NAS (Network
Attached Storage). It contains 1276 files and 324346 lines of
code in v1.3.503, including 971 Python files (173258 LOC)
and 133 JavaScript files (95917 LOC). From the test suites of
the automatic GUI regression test on its daily build, we
instrumented the test scripts to collect the GUI states in HTML
after the execution of each test step. Also, a test engineer in the
development team of Q’Center manually clustered the GUI
states by examining the corresponding screenshots. Table VIII
shows the characteristics of the collected data. The value of the

3 https://www.qnap.com/solution/qcenter/index.php?lang=en

145

TABLE VIII. THE COLLECTED GUI STATES AND NUMBER OF DISTINCT
CLUSTERS

Test Suite Description # Test
Cases

GUI
States

Clusters

install_wiz Installation wizard 6 60 22
rule NAS Rule management 3 237 80

server_add NAS addition and
removal 6 200 88

server_app App management and
config backup 7 207 42

settings Account and server
settings management 8 451 84

subject data is that it comes from real testing scenarios in
industry. The GUI state equivalence information is also
valuable because it can be used to know the effectiveness
among different techniques for state equivalence and the gaps
between the results produced by algorithms and human.

2) Experimental Setup
To understand the effectiveness of the proposed approach

in computing GUI state equivalence, we clustered the GUI
states with the proposed approach and other two abstraction
mechanisms, respectively. The F-measure (the harmonic mean
of precision and recall) of these three methods was calculated
using the correct answers from previous subsection.

To apply the proposed approach (NL) in state comparison,
for GUI states in HTML, we extracted their feature vectors
from the enclosed text of the visible DOM elements. Fig. 9
shows an example of the extracted vector. Afterwards, we
transformed the feature vectors as described in Section III
(without the labeling stage) to calculate their similarities. If the
similarity of an encountered state si with an existing state sj
exceeds a threshold (0.99999 in this experiment), si is
considered equivalent to sj. Otherwise, si would belong to a
new cluster of itself. If there are multiple candidate clusters for
a new state, a voting process similar to the one in Section III-D
would be adopted to choose one cluster from the candidates.
After inferred, a state would be put into the training corpus for
future comparisons.

 One of the abstraction mechanisms used in this experiment
is WhiteSpace (WS). It replaces all line breaks and tabs with
white space and then collapses white space in the HTML
before computing state equivalence. This is a common oracle
comparator because browsers also do so, and additional white
space may not affect user’s interpretation on a web page. The
other abstraction mechanism used in this experiment includes
three steps. First it keeps only the tag names and the
corresponding important attributes of a HTML, and then
applies WS abstraction to remove the line breaks and extra
white space. Finally it removes timestamps shown in the
HTML. This abstraction mechanism (TagAttrWD) is reported
an oracle comparator with the highest mean effectiveness in
fault detection [29]. We considered the required attributes from
HTML specification [16] and name, type and value for input
tags as important attributes, as designated in [29].

 In clustering result evaluation, true positive is the number
of pairs of data points belonging to the same cluster and
classified as the same group. False positive is the number of
pairs of data points belonging to different clusters and

classified as the same group. True negative and false negative
are defined similarly. By counting the positives and negatives,
we can calculate the precision, recall and F-measure of the
clustering results.

3) Results and Discussion
 Table IX shows the F-measure of the clustering results with
different methods. First, WS had the worst effectiveness in the
experiments. Second, TagAttrWD had better F-measure than
WS, which is consistent with the experimental results in fault
detection effectiveness conducted in [29]. Finally, the proposed
method outperformed other two abstraction techniques in three
of the five test suites, which means it can better distinguish
encountered GUI states when executing the three test suites. In
the other two test suites, the effectiveness of the proposed
approach is still better than WS and close to the best
(TagAttrWD).

 The proposed approach may better distinguish GUI states
in crawling-based web application testing, because it considers
semantic similarity among states when computing their
equivalence, which is analogous to what human does in the
same situation. Human doesn’t rely on the DOM structures but
the text on web pages to determine the equivalence. Therefore,
it is possible that two web pages with totally different DOM
structures are considered identical for testing purpose. We
believe that it is one of the reasons the proposed approach
outperformed other two conventional abstraction mechanisms.
Nevertheless, most of the clustering results are far from the
correct ones labeled by human (over two-thirds of the F-

TABLE IX. F-MEASURE OF THE CLUSTERING RESULTS

Test Suite F-measure
WS TagAttrWD NL

install_wiz 0.7817 0.8194 0.7826
rule 0.3241 0.3599 0.4443
server_add 0.4281 0.4751 0.6776
server_app 0.1532 0.1809 0.3559
settings 0.1180 0.4512 0.4156

The HTML:

The Extracted Feature Vector:

['the', 'demo', 'form', 'please', 'fill', 'the', 'form', 'family',
'name']
Fig. 9. An GUI state in HTML and its extracted feature vector

146

measure are smaller than 0.5). Two observations might
contribute to this issue. First, a test engineer may consider
consecutive GUI states as the same when doing a series of
input actions (e.g. filling a form). Second, as describe in
Section II, a test engineer may ignore a changed visible DOM
element, because the element is irrelevant to what he cares
about under current testing scenario.

 Recommendation. Experimental results showed promise
for adopting semantic similarity in computing state
equivalence. Also, it is possible to integrate the proposed
approach with conventional abstraction mechanisms to
improve the effectiveness of GUI state equivalence checking.

C. Threats to Validity
The implementation of the proposed approach could affect

the validity of results. To ensure the correctness, we adopted
mature and open-sourced libraries such as gensim [23],
BeautifulSoup [9] and Selenium Webdriver [31] in key steps of
our implementation. In input topic identification, a single
category of forms (graduate program registration) used and the
setup of the evaluation such as the labeled topics and derived
rules might affect generality of the results. However, the topics
(e.g. email, password and last_name) in the subject forms are
common in other categories of forms. We also open our source
code and data to the public for review and replication. In GUI
state comparison, the results on data from a commercial
application could not be generalize to web applications in other
categories, but the experiments on data from real-world
scenarios are still valuable.

VI. RELATED WORK
Crawling-based techniques for modern web applications

have been studied [3], [6], [11], [19], [28], [33] and adopted
[1], [5], [7], [20], [27], [30] in automated web application
testing. Raghavan and Garcia-Molina [28] presented an
operational model to crawl the content hidden behind search
forms. Their work is highly related to ours in terms of
analyzing labels to understand the topics of form elements.
However, they neither considered semantic similarity nor
addressed GUI state comparison. Duda et al. [11] proposed
algorithms to crawl AJAX-based web applications and index
the states. Similarly, a tool developed by Mesbah et al. [6]
called Crawjax tries to infer a finite state machine of an AJAX-
based web application through dynamically analyzing the
changes of the DOM contents. The tool is also used for
detecting and reporting violated invariants [5] and cross-
browser incompatibilities [27] in web applications. Schur et al.
[19] presented a crawler called ProCrawl to extract abstract
behavior models from multi-user web applications, focusing on
building a model close to business logic. A crawler developed
by Dallmeier et al. [33], WebMate, can autonomously explore
a web application, and use existing test cases as an exploration
base. Marchetto et al. [3] extracts a finite state machine from
existing execution traces of web applications, and generates
test cases consisting of dependent event sequences. In addition,
Fard et al. [7] combined the knowledge inferred from manual
test suites with automatic crawling in test case generation for
web applications. Thummalapenta et al. [30] presented a
technique to confine the number of a web application’s GUI
states explored by a crawler with existing business rules.

Nevertheless, none of these studies considers leveraging
semantic similarity in input value handling or GUI state
comparison as our work does.

About the measurement of crawling diversity or
effectiveness, Alshahwan et al. [20] proposed crawlability
metrics to quantify the extent to which a crawler is able to
explore the web pages or forms. These metrics combine
dynamic measurements such as statement coverage, with static
information such as lines of code. Moreover, Fard and Mesbah
[1] presented a couple of metrics such as JavaScript code
coverage, path diversity and DOM diversity to assess the test
model derived by a crawler. These measurements may be
tailored to evaluate the effectiveness of our techniques.

To verify that the executed test cases produce expected
results in web application testing, Sprenkle et al. [29] proposed
a suite of automated oracle comparators. The comparators were
applied to expose faults by reporting the difference between the
actual and expected HTML output. The fault detection
effectiveness of individual comparators and selected
comparator combinations were analyzed by calculating their
precision (i.e., if the reported differences were due to faults)
and recall (i.e., if all faults were revealed by reported
differences). While one of their comparator combinations,
TagAttrWD, was used in our experiment, our work focuses on
the ability of different abstraction mechanisms to correctly
distinguish new GUI states during crawling.

Studies on GUI ripping for testing purpose [4], [12] and
automatic black-box testing on mobile applications [2], [32]
are also related to our work in terms of how they explore the
interfaces of the applications and derive test models with
dynamic analysis. As a result, the proposed technique could be
applied in these contexts.

 With respect to using latent topic models in software testing
and debugging, Maletic and Marcus [17] adopted LSI to cluster
similar files of source code for software maintenance or
reengineering. Andrzejewski et al. [13] approached debugging
using a variant of LDA (Latent Dirichlet Allocation) [14] to
identify weak bug topics from strong interference. LDA was
also adopted by Lukins et al. [26] on a developer’s input such
as a bug report to localize faults statistically. Later, DiGiuseppe
and Jones [21], [22] adopted natural-language techniques such
as feature extraction and Tf-idf in fault description and
clustering. To our knowledge, this paper is the first to apply
latent topic models in crawling-based web application testing.

VII. CONCLUSION
 In this paper, we proposed a natural-language technique to
improve the effectiveness of crawling-based web application
testing. By considering semantic similarities between a training
corpus and a DOM element to be inferred, input topic
identification, GUI state comparison and clickable detection
can be performed with the proposed approach. In the future, we
plan to evaluate how the proposed techniques impact overall
crawling efficacy with more data and other topic model
alternatives such as LDA. Moreover, the proposed feature
extraction algorithm could be improved with more information
about DOM elements such as comments.

147

REFERENCES
[1] A. M. Fard and A. Mesbah, “Feedback-directed exploration of web

applications to derive test models,” in 2013 IEEE 24th International
Symposium on Software Reliability Engineering (ISSRE), 2013, pp.
278–287.

[2] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An Input
Generation System for Android Apps,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, New York, NY,
USA, 2013, pp. 224–234.

[3] A. Marchetto, P. Tonella, and F. Ricca, “State-Based Testing of Ajax
Web Applications.pdf,” in 2008 1st International Conference on
Software Testing, Verification, and Validation, 2008, pp. 121–130.

[4] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: reverse
engineering of graphical user interfaces for testing,” in 10th Working
Conference on Reverse Engineering, 2003. WCRE 2003. Proceedings,
2003, pp. 260–269.

[5] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-Based Automatic
Testing of Modern Web Applications,” IEEE Transactions on Software
Engineering, vol. 38, no. 1, pp. 35–53, Jan. 2012.

[6] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling Ajax-Based
Web Applications Through Dynamic Analysis of User Interface State
Changes,” ACM Trans. Web, vol. 6, no. 1, p. 3:1–3:30, Mar. 2012.

[7] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah, “Leveraging Existing
Tests in Automated Test Generation for Web Applications,” in
Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, New York, NY, USA, 2014, pp. 67–
78.

[8] A. Singhal, “Modern Information Retrieval: A Brief Overview,” IEEE
Data Eng. Bull., vol. 24, no. 4, pp. 35–43, 192001 2007.

[9] BeautifulSoup. https://pypi.python.org/pypi/beautifulsoup4
[10] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to

Information Retrieval. New York, NY, USA: Cambridge University
Press, 2008.

[11] C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou, “AJAX Crawl:
Making AJAX Applications Searchable,” in IEEE 25th International
Conference on Data Engineering, 2009. ICDE ’09, 2009, pp. 78–89.

[12] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A.
M. Memon, “Using GUI Ripping for Automated Testing of Android
Applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, New York, NY, USA,
2012, pp. 258–261.

[13] D. Andrzejewski, A. Mulhern, B. Liblit, and X. Zhu, “Statistical
Debugging Using Latent Topic Models,” in Proceedings of the 18th
European Conference on Machine Learning, Berlin, Heidelberg, 2007,
pp. 6–17.

[14] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[15] G. Keller and B. Warrack, Statistics for Management and Economics,
6th ed. Pacific Grove, CA: Thomson/Brooks/Cole. 2003

[16] HTML 4.01 Specification. http://www.w3.org/TR/html4/, Dec. 1999.
[17] J. I. Maletic and A. Marcus, “Using latent semantic analysis to identify

similarities in source code to support program understanding,” in 12th
IEEE International Conference on Tools with Artificial Intelligence,
2000 (ICTAI 2000), pp. 46–53.

[18] M. Benedikt, J. Freire, and P. Godefroid, “VeriWeb: Automatically
Testing Dynamic Web Sites,” in International World Wide Web
Conference (WWW), Honolulu, HI, 2002, pp. 654–668.

[19] M. Schur, A. Roth, and A. Zeller, “Mining Behavior Models from
Enterprise Web Applications,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, New York, NY,
USA, 2013, pp. 422–432.

[20] N. Alshahwan, M. Harman, A. Marchetto, R. Tiella, and P. Tonella,
“Crawlability Metrics for Web Applications,” in Verification and
Validation 2012 IEEE Fifth International Conference on Software
Testing, 2012, pp. 151–160.

[21] N. DiGiuseppe and J. A. Jones, “Concept-based Failure Clustering,” in
Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, New York, NY, USA, 2012,
p. 29:1–29:4.

[22] N. DiGiuseppe and J. A. Jones, “Semantic Fault Diagnosis: Automatic
Natural-language Fault Descriptions,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, New York, NY, USA, 2012, p. 23:1–23:4.

[23] R. �. u�ek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks, Valletta, Malta, 2010, pp. 45–50.

[24] S. Choudhary, M. E. Dincturk, G. V. Bochmann, G.-V. Jourdan, I.-V.
Onut, and P. Ionescu, “Solving Some Modeling Challenges when
Testing Rich Internet Applications for Security,” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and
Validation (ICST), 2012, pp. 850–857.

[25] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, 4th
Edition, 4th edition. Upper Saddle River, N.J: Pearson, 2002.

[26] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization using
latent Dirichlet allocation,” Information and Software Technology, vol.
52, no. 9, pp. 972–990, Sep. 2010.

[27] S. R. Choudhary, M. R. Prasad, and A. Orso, “CrossCheck: Combining
Crawling and Differencing to Better Detect Cross-browser
Incompatibilities in Web Applications,” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and
Validation (ICST), 2012, pp. 171–180.

[28] S. Raghavan and H. Garcia-Molina, “Crawling the Hidden Web,” in
Proceedings of the 27th International Conference on Very Large Data
Bases, San Francisco, CA, USA, 2001, pp. 129–138.

[29] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and S. Ecott,
“Automated Oracle Comparators for Testing Web Applications,” in The
18th IEEE International Symposium on Software Reliability, 2007.
ISSRE ’07, 2007, pp. 117–126.

[30] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra,
“Guided Test Generation for Web Applications,” in Proceedings of the
2013 International Conference on Software Engineering, Piscataway,
NJ, USA, 2013, pp. 162–171.

[31] Selenium HQ. http://seleniumhq.org/.
[32] UI/Application Exerciser Monkey.

http://developer.android.com/tools/help/monkey.html
[33] V. Dallmeier, B. Pohl, M. Burger, M. Mirold, and A. Zeller, “WebMate:

Web Application Test Generation in the Real World,” in 2014 IEEE
Seventh International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), 2014, pp. 413–418.

[34] V. Garousi, A. Mesbah, A. Betin-Can, and S. Mirshokraie, “A
systematic mapping study of web application testing,” Information and
Software Technology, vol. 55, no. 8, pp. 1374–1396, Aug. 2013.

148

